承担科研项目情况:
[1] 国家重点研发计划项目(2024YFB3411300)子课题,2024.12-2027.11,重特大森林火灾应急救援通道开辟装备部署及多装备协同作业技术研究,120万,No. 2024YFB3411305-02,主持;
[2] 国家自然科学基金面上项目, 2022.1-2025.12, 储层压裂诱发断层剪切破裂机制的实验研究, 59万, No. 42174118, 主持;
[3] 国家重点研发计划项目(2021YFC3001900)专题,2021.12-2024.11,典型次生灾害应急监测预警模型和装备体系研究,169万,No.2021YFC3001901-05,主持;
[4] 国家自然科学基金青年基金项目, 2018.1-2020.12, 基于数字图像相关方法的地震断层动态破裂的实验研究, 24万, No. 41704096, 主持;
[5] 自然资源部页岩气资源勘查重点实验室开放课题,2024.08-2025.07,页岩气开发区地震震相快速拾取及定位技术研究,20万,No. KLSGE-202302,主持;
[6] 应急管理部委托业务,2022.7-2022.11,科技重大专项论证研究,15万,主持;
[7] 中央级科研院所基本科研业务项目, 2020.1-2022.12, 高压流体条件下断层剪切破裂实验研究及其对注水诱发地震机制的启示, 50万, ZDJ2020-7, 主持;
[8] 中央级科研院所基本科研业务项目, 2017.1-2018.12, 预应力岩样张拉破裂的断裂力学实验研究及其深孔应力测量应用, 27.59万, ZDJ2017-13, 主持;
[9] 自然资源部页岩气资源勘查重点实验室开放基金,2019.9-2020.9,页岩气开发的地质力学环境效应及其区域影响, 8万, No. KLSGE-MLR-201904, 主持;
[10] 中央级科研院所基本科研业务重点项目, 2019.1-2022.12, 郯庐断裂带北延段(辽宁段)强震孕育的动力学模型研究-郯庐断裂带北延段(辽宁段)区域公共应力模型研究, 23万/335.72万元, ZDJ2019-16, 子课题负责人
[11] 国家自然科学基金青年基金项目, 2019.1-2021.12, 断层面库仑应力变化监测方法的力学机理实验研究, 25万, No. 41804089, 骨干参与;
[12] 国家自然科学基金青年基金项目, 2018.1-2020.12, 横向非均匀椭球形地球表面载荷粘弹性响应的并行计算方法研究, 24万, No. 41704097, 骨干参与;
[13] 中国大陆综合地球物理场观测仪器研发专项, 2017.8-2019.7, 智能化液压微裂原地应力测试设备研发, 90万, Y201802, 骨干参与;
[14] 中国大陆综合地球物理场观测仪器研发专项, 2017.8-2019.7, 断层面库仑应力变化分布式监测技术研究, 45万, Y201706, 骨干参与;
[15] 国家自然科学基金青年基金项目, 2018.1-2020.12, 横向非均匀椭球形地球表面载荷粘弹性响应的并行计算方法研究, 24万, No. 41704097, 骨干参与;
[16] 中央级科研院所基本科研业务项目, 2017.1-2018.12, 破坏性地震深浅部同震响应特征的数值模拟研究及工程应用, 21.7万, ZDJ2017-12, 骨干参与。
|
代表论著:
[1] Gao G, Wang C*, Gao K. Stress tensor determination by modified hydraulic tests on pre-existing fractures: method and stress constraints. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(5): 1637-1648. https://doi.org/10.1016/j.jrmge.2023.11.029
[2] Gao G, Zhang K, Wang P, Xu Y*, Zhou H, Wang C. Dynamic strength and fracturing behavior of persistent fractured granite under dynamic loading. Bulletin of Engineering Geology and the Environment, 2024, 83(218). https://doi.org/10.1007/s10064-024-03718-6
[3] Gao G, Wang P, Wang C*, Yang C. Crustal dynamics prediction and characterization for the Yishu fault zone based on slip susceptibility analysis. International Journal of Earth Sciences, 2024, 113: 843-860. https://doi.org/10.1007/s00531-024-02424-8
[4] 高桂云,张梦云,王成虎,李梅,杨承伟,李峰. 基于多源数据的滇中构造应力场精细化分区及应力剖面构建[J]. 地球物理学报, 2024. https://doi.org/10.6038/cjg2024R0845 (录用待刊)
[5] Guiyun Gao, Ningyu Wu, Chenghu Wang, Jikun Liu. Stress Tensor Determination by Modified Hydraulic Tests on Pre-existing Fractures in Inclined Boreholes. ARMS 13. (Accepted)
[6] 高桂云, 王成虎*,刘冀昆, 武凝雨, 闫绍坤, 林淇七. 倾斜钻孔三维地应力张量反演方法及其应用研究. 岩石力学与工程学报, 2024, 43(S2): 3700-3709.
[7] 谷佳诚, 高桂云*, 周昊, 刘冀昆, 王成虎. 页岩气开采诱发地震的主要机理及影响因素. 震灾防御技术, 2024, 19(3): 514-525.
[8] 高桂云,王成虎,乔计花,李虎平,姜文学. 组织网格化 制度规范化 责任清单化 考核标准化——陕西省应急管理体系和能力建设调研[J]. 中国应急管理, 2024(9): 78-95.
[9] Gao, G., Chang, C., Wang, C., Li, Y., & Jia, J. Stress State Change and Fault Slip Tendency Assessment Associated with Gas Injection and Extraction in the Hutubi (China) Underground Gas Storage. SPE Journal, 2023, 28(01):446-461.
[10] 高桂云,王成虎*,周昊,谷佳诚. 基于多源应力数据的川南地区地应力特征分析[J]. 地下空间与工程学报, 2023, 19(2): 550-559.
[11] Guiyun Gao, Zhijie Li, Chandong Chang. Numerical simulation of diametrical core deformation and fracture induced by core drilling. Arabian Journal of Geosciences, 2022, 15:59.
[12] 谷佳诚, 高桂云*, 周昊, 安易飞, 王成虎. 滇藏铁路香格里拉-邦达段地应力状态及工程效应分析. 工程地质学报, 2022, 30(1):254-264.
[13] 柯善剑,冉立,高桂云*,周权峰,裴开元. 深埋特长隧道高地应力状态评价及复核研究. 工程勘察, 2022. 50(7): 8-14.
[14] 朱海明, 张生魁, 刘忠明, 高桂云*, 周昊, 魏学勇. 川藏专题-桃子垭深埋特长隧道地应力预测及复核. 工程地质学报, 2022, 30(3): 863-73.
[15] Gao G, Chang C, Wang C, Jia J. Recent temporal changes in the stress state and fault reactivation assessment of HTB underground gas storage in China associated with gas injection and extraction. IOP Conference Series: Earth and Environmental Science, 2021, 861(5):052019.
[16] Gu JC, Gao GY*, Wang CH, Chen N, Zhou H. Stress state of the Shangri-La−Bangda section of Yunnan−Tibet Railway and its implication for route alignment. IOP Conference Series: Earth and Environmental Science, 2021, 861(5): 052046.
[17] 赵善坤, 高桂云*, 王成虎, 张宁博, 刘一民, 侯正阳. 小孔径圆锥式孔底套芯应力解除法及试验研究. 煤炭学报, 2021, 46(S1): 74-83(EI)
[18] 冉立、周权峰、彭文彬、裴开元、周昊、高桂云*. 隧洞高地应力复核及评价方法应用研究. 中国土木工程学会2021年学术会论文集, 2021, p942-949.
[19] Guiyun Gao, Chenghu Wang, Pu Wang, Ruhua Yang. The relationship between fracture toughness and confining pressure. Proceedings of ISRM 14th International Congress of Rock Mechanics, held in Iguassu Falls, Brazil, Sep. 13–18, 2019, p1030-1036, Rock Mechanics for Natural Resources and Infrastructure Development, edited by Sergio A.B. da Fontoura, Ricardo José Rocca & José Félix Pavón Mendoza, Published by Taylor & Francis Group, London. ISBN 978-0367-42284-4. 2020, 4265字
[20] Gao G, Wang C, Zhou H, Wang P. Modified fracture mechanics approach for hydraulic fracturing stress measurements. Geofluids, 2020, 2020: 8860163.
[21] Chenghu Wang, Guiyun Gao*, Qing Jia, Chunquan Wang. Investigation of optimum sample shape for the Luong core tension test. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 831-844.
[22] 王成虎, 高桂云*, 贾晋, Chang C, 武志德. H储气库注采诱发应力场及断层滑动趋势变化. 天然气工业, 2020, 40(10):76-85.
[23] 王成虎,高桂云*,杨树新,瑞 姚,黄禄渊. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报, 2019, 38(11): 2242-2253.
[24] Guiyun Gao. Fracture behavior of rock plate under static and dynamic combined loads. Procedia Structural Integrity, 2018, 13: 51-56.
[25] 高桂云, 励争, NEGAHBAN M. 各向异性脆性材料动态断裂的实验研究. 岩石力学与工程学报, 2018, 37(S2): 3979-3989.
[26] 高桂云, 王成虎, 王春权. 双圆环直接拉伸试验试样最优尺寸范围研究. 岩土力学, 2018; 39(S1): 191-202.
[27] 高桂云, 周洁, 励争. 脆性材料裂纹与损伤相互作用的试验研究. 岩石力学与工程学报, 2017, 36(11): 2650-2661.
[28] Gao, G., Yao, W., Xia, K. & Li, Z. Application of digital image correlation (DIC) method to dynamic fracture behavior of rock plate under uniform compression. 4th ISRM Young Scholars Symposium on Rock Mechanics, 2017.5, Jeju, Korea.
[29] 高桂云, 杨家修, 吴梦喜. 有限元强度折减法在边坡稳定性分析中的有效性及结果检验方法. 工程地质学报, 2017, 35(s1): 470-477.
[30] Guiyun Gao, Jie Zhou, Zheng Li. Experimental investigation of dynamic fracture behaviors of Polymethyl Methacrylate. Macromolecular Symposia, 2016, 365(1): 180-190.
[31] Guiyun Gao, Wei Yao, Kaiwen Xia, Zheng Li. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Engineering Fracture Mechanics, 2015, 138: 146–155.
[32] Guiyun Gao, Sheng Huang, Kaiwen Xia, Zheng Li. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Experimental Mechanics, 2015, 55(1): 95-104.
[33] Guiyun Gao, Zheng Li, Mehrdad Negahban. Dynamic fracture analysis of Polycarbonate by the optical method of caustics. Procedia Materials Science, 2014, 3:165-176.
[34] Guiyun Gao, Jie Zhou, Zheng Li. Dynamic fracture analysis of Semi-Circular Bending (SCB) specimen by the optical method of caustics. B. Song et al. (eds.), Dynamic Behavior of Materials, Volume 1. Springer International Publishing, 2014: 159-168.
[35] Guiyun Gao, Zheng Li, Mehrdad Negahban. Dynamic fracture analysis of aging glassy polycarbonate by the method of caustics. Acta Mechanica Solida Sinica, 2013, 26(5): 1-10.
[36] Guiyun Gao, Zheng Li, Jie Xu. Optical method of caustics applied in viscoelastic fracture analysis. Optics and Lasers in Engineering, 2011, 49(5):632-39.
|